
ef1p.com 1Computers

Computers
Programmable machines

5 October 2024

https://ef1p.com

2Computersef1p.com

Outline
● Hardware and software

● Numeral systems and binary digits (bits)

● Binary truth functions and logic gates

● Computer architecture, CPU, and instructions

● Algorithm, program, and compiler

Slides available at it-course.ch/Computers.pdf

License for these slides: CC BY 4.0

https://ef1p.com
https://it-course.ch/Computers.pdf
https://creativecommons.org/licenses/by/4.0/

3Computersef1p.com

Good news
● Computers do exactly what you tell them to do.

● They do it incredibly fast.

https://ef1p.com

4Computersef1p.com

Bad news
● Computers do exactly what you tell them to do.

● They do it incredibly fast.

https://ef1p.com

5Computersef1p.com

Hardware and software
Hardware:

● Computers (physical)

● General purpose
machines

● Expensive to design

● Expensive to copy

● Subjected to wear

● Difficult to fix once
shipped

Software:

● Programs (intangible)

● Special purpose
instructions

● Expensive to design

● Free to copy

● Wear-free

● Never really finished,
requires maintenance

https://ef1p.com
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Software

6Computersef1p.com

Numeral systems
● Decimal numeral system: ten symbols, called

digits (from Latin “digitus”): 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9. Example: 123 = 1·102 + 2·101 + 1·100.

● Binary numeral system: only two symbols,
called bits (short for “binary digits”): 0 and 1.
Example: 1011 = 1·23 + 0·22 + 1·21 + 1·20.
8 bits = 1 byte.

● Task: Count and add in binary.

https://ef1p.com
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Binary_number

7Computersef1p.com

Truth functions with truth tables

Implemented in hardware as logic gates usually
with transistors. Depicted as:

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

AND

https://ef1p.com
https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Exclusive_or

8Computersef1p.com

Tasks
1. Design logic gates which implement these

binary truth functions using water (1 as on, 0 as
off) coming from two pipes collected in a third
pipe. (The simplicity of logic gates is why all
modern computers use binary representations.)

2. Design an electronic circuit using logic gates
which forms the sum S and the carry C from
two input bits A and B.

3. Inputs: A, B, and Cin; outputs: S and Cout

Solutions: visualization, half adder, full adder

https://ef1p.com
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Carry_(arithmetic)
https://x.com/page_eco/status/1188749430020698112
https://en.wikipedia.org/wiki/Adder_(electronics)#Half_adder
https://en.wikipedia.org/wiki/Adder_(electronics)#Full_adder

9Computersef1p.com

Computer (heavily simplified)

Central
Processing
Unit (CPU)

Memory

Input
devices

Output
devices

● There is volatile and non-volatile memory.

● Performance is increased with caches.

● Also: Graphics Processing Unit (GPU).

Computer

https://ef1p.com
https://en.wikipedia.org/wiki/Volatile_memory
https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Graphics_processing_unit

10Computersef1p.com

Instructions (heavily simplified)
The CPU stores its data in so-called registers.

The CPU executes five types of instructions:

● Load data from memory to registers,

● Store data from registers to memory,

● Perform arithmetic operations on registers,

● Perform logical operations on registers, and

● Jump to a given instruction, which can depend
on so-called flags set by the previous operation.

https://ef1p.com
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/FLAGS_register

11Computersef1p.com

Example (simplified)
 mov 0, sum
 mov 1, num
loop: add num, sum
 add 1, num
 cmp num, 100
 ble loop
 halt

Explanation: mov: move; cmp: compare;
ble: branch if less or equal

Question: What is the above code doing?

https://ef1p.com

12Computersef1p.com

Algorithm

An algorithm is a procedure for solving a specified
problem in a finite number of steps, i.e. it has to
produce an output eventually.

Examples: Sorting, finding the shortest path, etc.

A program is a list of instructions that can be run.

Input Algorithm Output

https://ef1p.com
https://en.wikipedia.org/wiki/Algorithm
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://en.wikipedia.org/wiki/Computer_program

13Computersef1p.com

Compiler

A compiler is a program which translates code
from a source language into a target language.

A codebase can be compiled to different targets.

For now: source code → machine code, which is
usually displayed in an assembly language.

Source Compiler Target

https://ef1p.com
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Codebase
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Assembly_language

14Computersef1p.com

Example (real deal)
Sum all numbers from 1 to 100
in the C programming language.

Compiled with the GNU compiler
collection gcc -S source.c
to x86 AT&T assembly syntax.

#include <stdio.h>
int main() {
 int result = 0;
 int number = 1;
 while (number <= 100) {
 result = result + number;
 number = number + 1;
 }
 printf("Result: %d\n", result);
 return 0;
}

_main:
 pushq %rbp
 movq %rsp, %rbp
 subq $16, %rsp
 movl $0, -4(%rbp)
 movl $0, -8(%rbp)
 movl $1, -12(%rbp)
LBB0_1:
 cmpl $100, -12(%rbp)
 jg LBB0_3
 movl -8(%rbp), %eax
 addl -12(%rbp), %eax
 movl %eax, -8(%rbp)
 movl -12(%rbp), %eax
 addl $1, %eax
 movl %eax, -12(%rbp)
 jmp LBB0_1
LBB0_3:
 movl -8(%rbp), %esi
 leaq L_.str(%rip), %rdi
 movb $0, %al
 callq _printf
 xorl %eax, %eax
 addq $16, %rsp
 popq %rbp
 retq
L_.str:
 .asciz "Result: %d\n"

⇨

https://ef1p.com
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/X86_assembly_language#Syntax

15Computersef1p.com

Explanations
● Labels end with : (LBB: local block begin).

● Literal values start with $, registers with %.

● Suffix of commands determines the bit-length:
b for byte (1 byte = 8 bits), w for word (2 bytes
= 16 bits), l for double word (4 bytes = 32 bits),
and q for quad word (8 bytes = 64 bits).

● Program flow: jmp means jump unconditionally;
jg means jump on greater than based on the
cmp (comparison) in the previous instruction.

https://ef1p.com
https://en.wikipedia.org/wiki/Label_(computer_science)
https://en.wikipedia.org/wiki/Literal_(computer_programming)
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Word_(computer_architecture)#Size_families
https://en.wikipedia.org/wiki/X86_assembly_language#Program_flow

16Computersef1p.com

Abstraction
Managing registers and memory (allocation and
deallocation of space for variables) is a hassle.

This is why almost all programs are written in
high-level programming languages, which abstract
from the details of the current computing platform.

Low-level aspects are then handled by a compiler.

You find more information about assembly here.

https://ef1p.com
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://cs61.seas.harvard.edu/site/2021/Asm/

17Computersef1p.com

Example: Prime factorization
#include <stdio.h> // Comments:
int main() {
 int number; // Variable declaration
 printf("Number: "); // Print to standard output
 scanf("%d", &number); // Read a number from input
 while (number > 0) { // Loop while condition true
 printf("Factors: ");
 int factor = 2; // Assign value to variable
 while (factor * factor <= number) {
 if (number % factor == 0) { // Check remainder (modulo)
 printf("%d, ", factor);
 number = number / factor;
 } else {
 factor = factor + 1;
 }
 }
 printf("%d\n", number);
 printf("Number: ");
 scanf("%d", &number);
 }
 return 0;
}

https://ef1p.com
https://explained-from-first-principles.com/number-theory/#prime-factorization

18Computersef1p.com

Task: Come up with an algorithm
The greatest common divisor of two integers is the
largest positive integer which divides both integers
without a remainder.

Geometric interpretation: Largest size of square
tile which tiles a rectangle/room without
remainders.

Task: Come up with an algorithm which finds the
size of this square tile. Example: gcd(51, 21) = 3.

Solution: Euclidean algorithm

https://ef1p.com
https://explained-from-first-principles.com/number-theory/#greatest-common-divisor
https://explained-from-first-principles.com/number-theory/#euclidean-division
https://explained-from-first-principles.com/number-theory/#euclidean-algorithm

