
ef1p.com 1Cryptography

Cryptography
Communicate securely

6 October 2024

https://ef1p.com

2Cryptographyef1p.com

Outline
● Symmetric-key encryption and one-time pad

● Cryptographic hash functions

● Public-key cryptography w. modular arithmetic

● Fast exponentiation and discrete-log. problem

● Diffie-Hellman, ElGamal enc., Schnorr signature

Slides available at it-course.ch/Cryptography.pdf

License for these slides: CC BY 4.0

Some topics covered at ef1p.com/number-theory

https://ef1p.com
https://it-course.ch/Cryptography.pdf
https://creativecommons.org/licenses/by/4.0/
https://explained-from-first-principles.com/number-theory/

3Cryptographyef1p.com

Introduction
Cryptography from Greek κρυπτός (secret) and
γράφειν (writing) is the science of secure
communication in the presence of third parties.

For ages, encryption was more art than science.

Today based on computational hardness
assumptions about problems like integer
factorization and the discrete logarithm problem.

Computationally secure (hard to break) versus
information-theoretically secure (can’t be broken).

https://ef1p.com

4Cryptographyef1p.com

Symmetric-key encryption

The sender and the receiver share the same key.

Only encr. method publicly known before 1976.

Prefix the plaintext with some random bytes to
prevent the recognition of identical messages.

https://ef1p.com

5Cryptographyef1p.com

Perfectly-secure enc. (one-time pad)
The exclusive-or operator (XOR or ⊕):

It is commutative (M ⊕ K = K ⊕ M) and
reversible (if M ⊕ K = C, C ⊕ K = M).

Bitwise application to 2 strings of bits:

Not practical:
Key as long

as message.

Perfectly secure because there’s a K for every M.

M ⊕ K = C

0 0 0

0 1 1

1 0 1

1 1 0M
⊕
K
=
C

0 1 0 0 1 1 0 1

1 1 1 0 1 0 0 1

1 0 1 0 0 1 0 0

https://ef1p.com
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Bitwise_operation

6Cryptographyef1p.com

Cryptographic hash functions

Preimage resistance:
Given y, infeasible to find x so that h(x) = y.

Collision resistance:
Infeasible to find distinct x and y so that h(x) = h(y).

Popular: SHA-256 (256-bit secure hash algorithm).

Hash functions have many interesting applications.

https://ef1p.com
https://explained-from-first-principles.com/email/#cryptographic-hash-functions
https://explained-from-first-principles.com/email/#secure-hash-algorithms
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://explained-from-first-principles.com/email/#applications-of-cryptographic-hash-functions

7Cryptographyef1p.com

Public-key cryptography
Main problem with symmetric-key cryptography:
Each pair of parties must share a different key or
rely on a trusted third party to distribute one.

Public-key cryptography proposed in 1976: A pair
of related keys (private key and public key), where
it’s infeasible to derive the former from the latter.

https://ef1p.com

8Cryptographyef1p.com

Modular arithmetic
The modulo operator % returns the (positive)
remainder of a division. For example: 8 % 3 = 2.

If two integers a and b have the same remainder
modulo the same modulus m, we write a =m b.

If a1 =m a2 and b1 =m b2, we have that

● a1 + b1 =m a2 + b2

● a1 · b1 =m a2 · b2

which can be seen by replacing a1 =m a2 with
a1 = a2 + ca · m for some integer ca (same with b).

https://ef1p.com
https://explained-from-first-principles.com/number-theory/#modulo-operation
https://explained-from-first-principles.com/number-theory/#congruence-relation

9Cryptographyef1p.com

Repeat an integer modulo a prime p
A · A =p A2, A2 · A =p A3, A3 · A =p A4, and so on.

Instead of computing An in (n – 1) steps, we can
compute it faster by using recursion: If n is odd,
compute An =p An–1 · A. If n is even, An =p (An/2)2.

This allows us to compute A13, for example, in 5
instead of 12 steps (scales with bit length of n):

https://ef1p.com
https://en.wikipedia.org/wiki/Recursion_(computer_science)

10Cryptographyef1p.com

Discrete-logarithm problem (DLP)
Discrete-logarithm problem: Given N =p An, no
efficient algorithm is known to compute n from A
and N (i.e. to determine how many times A has
been repeated to get to N) for certain values of p.

Modular exponentiation is a one-way function.

This asymmetry has three important applications:
● Key exchange (or rather agreement)
● Asymmetric encryption
● Digital signatures

https://ef1p.com
https://en.wikipedia.org/wiki/Discrete_logarithm

11Cryptographyef1p.com

Diffie-Hellman key exchange

Alice
choose random a < p–1

compute A =p Ga

compute KA =p Ba

Bob
choose random b < p–1

compute B =p Gb

compute KB =p Ab

A

How to generate a secret over a public channel?

KA =p Ba =p (Gb)a =p (Ga)b =p Ab =p KB

The shared key K can be used for symmetric enc.

B

https://ef1p.com
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

12Cryptographyef1p.com

ElGamal public-key encryption
Key generation:

● Bob chooses a prime p with a generator G

● Bob chooses b < p – 1 and computes B =p Gb

● Bob publishes p, G, and B as his public key

Encryption:

● Alice chooses a < p – 1 and computes A =p Ga

● Alice computes ciphertext as C =p M · Ba and A

Decryption:

● Bob: M =p C · A–b =p M·Ba·(Ga)–b =p M·(Gb)a·(Gb)–a

https://ef1p.com
https://en.wikipedia.org/wiki/ElGamal_encryption

13Cryptographyef1p.com

How to compute a multipl. inverse?
Use the extended Euclidean algorithm: Don’t just
subtract the numbers from each other, subtract
whole equations from one another.

Example:

Since 1 = (–8)·53 + 17·25, 1 =53 17·25, 25–1 =53 17.

Quotient Remainder = … · 53 + … · 25

53 1 0

– 2 · 25 0 1

– 8 · 3 1 –2

– 3 · 1 –8 17

0 25 –53

https://ef1p.com
https://explained-from-first-principles.com/number-theory/#extended-euclidean-algorithm

14Cryptographyef1p.com

Digital signatures

Signatures are easy to produce and hard to forge.

Digital signatures must depend on the message.

For efficiency, sign only the hash of the message.

One use case: Have certificate authorities (CAs)
sign certificates about who owns which public key.

https://ef1p.com
https://en.wikipedia.org/wiki/Certificate_authority

15Cryptographyef1p.com

Digital signature scheme
Digital signature schemes consist of 3 algorithms:

● KeyGeneration(entropy) → private k, public K
(called key because you can unlock things like
coins; k → K typically easy, K → k always hard)

● Signing(message, k) → signature (can only be
produced by the person who knows the key k)

● Verification(message, K, signature) → true/false
(anyone who knows the public key K can verify)

https://ef1p.com

16Cryptographyef1p.com

Computations with secret values
The idea behind many signature schemes is to use
a linear one-way function f to hide the private key
while still allowing the verifier to compute with it.

Example: You can compute f(a · b) if you know f(b)
and a without having to know b (s. Diffie-Hellman).

For the signature scheme discussed today,
k is the private key and K = Gk the public key.

A signature value s has to depend on the private
key k and h = hash(message).

https://ef1p.com

17Cryptographyef1p.com

Zero-knowledge proofs
Goal: Convince another party of one’s knowledge
w/o revealing any information or leaving evidence.

Parties: Prover convinces verifier of knowing k.
Trivial by revealing k but not zero-knowledge then.

● Completeness (successful proof): An honest
verifier will be convinced by an honest prover.

● Soundness (proof of knowledge): Prover can
fake knowledge only with negligible probability.

● Zero-knowledge: Verifier can fake transcript.

https://ef1p.com

18Cryptographyef1p.com

Knowledge of discrete logarithm
Prover

knows k so that K = Gk

choose random r < |G|
compute R = Gr

compute s =|G| r − k · c

Verifier

choose random c < |G|

verify that R = Gs · Kc

R

c

s

https://ef1p.com

19Cryptographyef1p.com

Evaluation of criteria
● Completeness: Gr = Gr − k · c · (Gk)c.

● Soundness: By sending distinct challenges c
and c' after the same R, the verifier can extract
the secret k by computing (s − s')/(c' − c)
because Gs · Kc = R = Gs' · Kc' and thus
Gs / Gs' = Gs − s' = Kc' / Kc = Kc' − c.

● Zero-Knowledge: By choosing the random
values c and s first, the verifier can compute
R = Gs · Kc, which results in a valid transcript.

https://ef1p.com

20Cryptographyef1p.com

Choice of the challenge
Since the verifier might choose the challenge c
non-randomly, this protocol is only so-called
honest-verifier zero-knowledge. A dishonest
verifier can turn this into a signature scheme.
(The verifier could commit to c beforehand.)

To be a proof of knowledge, the prover has to
learn the challenge c after fixing the ephemeral
key R. This dependency can be established either
by a verifier or by a cryptographic hash function.

https://ef1p.com
https://en.wikipedia.org/wiki/Commitment_scheme
https://en.wikipedia.org/wiki/Ephemeral_key
https://en.wikipedia.org/wiki/Ephemeral_key

21Cryptographyef1p.com

Schnorr signature scheme
Signer:

● Knows k so that K = Gk.

● Choose random r < |G|.

● Compute R = Gr, c = hash(R, m, K),
and s =|G| r − k · c for message m.

● Share (c, s) as a signature.

Verifier:

● Verify whether c = hash(Gs · Kc, m, K).

https://ef1p.com
https://en.wikipedia.org/wiki/Schnorr_signature

22Cryptographyef1p.com

Appendix of missing explanations
● |G| is the so-called order of the generator G,

which is the smallest integer n so that Gn =p 1.
● Every integer A strictly between 0 and p is

relatively prime to p, i.e. gcd(A, p) = 1.
● Extended Euclidean alg.: A–1 exists for every A.
● A · X =p B has solution X =p A–1 · B for every B.
● Given p – 1 possible X and B, solution is unique.
● Thus, A·X is a permutation of all possible values.
● Π X =p Π A · X =p Ap–1 · Π X (product over all X).
● Cancel Π X on both sides: 1 =p Ap–1 for all A.

https://ef1p.com
https://explained-from-first-principles.com/number-theory/#element-order
https://en.wikipedia.org/wiki/Coprime_integers
https://en.wikipedia.org/wiki/Permutation
https://explained-from-first-principles.com/number-theory/#proof-without-cosets-for-commutative-groups
https://explained-from-first-principles.com/number-theory/#fermats-little-theorem

