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Outline
● Symmetric-key encryption and one-time pad

● Cryptographic hash functions

● Public-key cryptography w. modular arithmetic

● Fast exponentiation and discrete-log. problem

● Diffie-Hellman, ElGamal enc., Schnorr signature
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Introduction
Cryptography from Greek κρυπτός (secret) and 
γράφειν (writing) is the science of secure 
communication in the presence of third parties.

For ages, encryption was more art than science.

Today based on computational hardness 
assumptions about problems like integer 
factorization and the discrete logarithm problem.

Computationally secure (hard to break) versus 
information-theoretically secure (can’t be broken).

https://ef1p.com
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Symmetric-key encryption

The sender and the receiver share the same key.

Only encr. method publicly known before 1976.

Prefix the plaintext with some random bytes to 
prevent the recognition of identical messages.

https://ef1p.com
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Perfectly-secure enc. (one-time pad)
The exclusive-or operator (XOR or ⊕):

It is commutative (M ⊕ K = K ⊕ M) and
reversible (if M ⊕ K = C, C ⊕ K = M).

Bitwise application to 2 strings of bits:

Not practical:
Key as long

as message.

Perfectly secure because there’s a K for every M.

M ⊕ K = C

0 0 0

0 1 1

1 0 1

1 1 0M
⊕
K
=
C

0 1 0 0 1 1 0 1

1 1 1 0 1 0 0 1

1 0 1 0 0 1 0 0

https://ef1p.com
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Bitwise_operation
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Cryptographic hash functions

Preimage resistance:
Given y, infeasible to find x so that h(x) = y.

Collision resistance:
Infeasible to find distinct x and y so that h(x) = h(y).

Popular: SHA-256 (256-bit secure hash algorithm).

Hash functions have many interesting applications.

https://ef1p.com
https://explained-from-first-principles.com/email/#cryptographic-hash-functions
https://explained-from-first-principles.com/email/#secure-hash-algorithms
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://explained-from-first-principles.com/email/#applications-of-cryptographic-hash-functions
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Public-key cryptography
Main problem with symmetric-key cryptography: 
Each pair of parties must share a different key or 
rely on a trusted third party to distribute one.

Public-key cryptography proposed in 1976: A pair 
of related keys (private key and public key), where 
it’s infeasible to derive the former from the latter.

https://ef1p.com
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Modular arithmetic
The modulo operator % returns the (positive) 
remainder of a division. For example: 8 % 3 = 2.

If two integers a and b have the same remainder 
modulo the same modulus m, we write a =m b.

If a1 =m a2 and b1 =m b2, we have that

● a1 + b1 =m a2 + b2

● a1 · b1 =m a2 · b2

which can be seen by replacing a1 =m a2 with
a1 = a2 + ca · m for some integer ca (same with b).

https://ef1p.com
https://explained-from-first-principles.com/number-theory/#modulo-operation
https://explained-from-first-principles.com/number-theory/#congruence-relation
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Repeat an integer modulo a prime p
A · A =p A2,   A2 · A =p A3,   A3 · A =p A4, and so on.

Instead of computing An in (n – 1) steps, we can 
compute it faster by using recursion: If n is odd, 
compute An =p An–1 · A. If n is even, An =p (An/2)2.

This allows us to compute A13, for example, in 5 
instead of 12 steps (scales with bit length of n):

https://ef1p.com
https://en.wikipedia.org/wiki/Recursion_(computer_science)
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Discrete-logarithm problem (DLP)
Discrete-logarithm problem: Given N =p An, no 
efficient algorithm is known to compute n from A 
and N (i.e. to determine how many times A has 
been repeated to get to N) for certain values of p.

Modular exponentiation is a one-way function.

This asymmetry has three important applications:
● Key exchange (or rather agreement)
● Asymmetric encryption
● Digital signatures

https://ef1p.com
https://en.wikipedia.org/wiki/Discrete_logarithm
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Diffie-Hellman key exchange

Alice
choose random a < p–1

compute A =p Ga

compute KA =p Ba

Bob
choose random b < p–1

compute B =p Gb

compute KB =p Ab

A

How to generate a secret over a public channel?

KA =p Ba =p (Gb)a =p (Ga)b =p Ab =p KB

The shared key K can be used for symmetric enc.

B

https://ef1p.com
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
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ElGamal public-key encryption
Key generation:

● Bob chooses a prime p with a generator G

● Bob chooses b < p – 1 and computes B =p Gb

● Bob publishes p, G, and B as his public key

Encryption:

● Alice chooses a < p – 1 and computes A =p Ga

● Alice computes ciphertext as C =p M · Ba and A

Decryption:

● Bob: M =p C · A–b =p M·Ba·(Ga)–b =p M·(Gb)a·(Gb)–a

https://ef1p.com
https://en.wikipedia.org/wiki/ElGamal_encryption
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How to compute a multipl. inverse?
Use the extended Euclidean algorithm: Don’t just 
subtract the numbers from each other, subtract 
whole equations from one another.

Example:

Since 1 = (–8)·53 + 17·25, 1 =53 17·25, 25–1 =53 17.

Quotient Remainder = … · 53 + … · 25

53 1 0

– 2 · 25 0 1

– 8 · 3 1 –2

– 3 · 1 –8 17

0 25 –53

https://ef1p.com
https://explained-from-first-principles.com/number-theory/#extended-euclidean-algorithm
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Digital signatures

Signatures are easy to produce and hard to forge.

Digital signatures must depend on the message.

For efficiency, sign only the hash of the message.

One use case: Have certificate authorities (CAs) 
sign certificates about who owns which public key.

https://ef1p.com
https://en.wikipedia.org/wiki/Certificate_authority
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Digital signature scheme
Digital signature schemes consist of 3 algorithms:

● KeyGeneration(entropy) → private k, public K 
(called key because you can unlock things like 
coins; k → K typically easy, K → k always hard)

● Signing(message, k) → signature (can only be 
produced by the person who knows the key k)

● Verification(message, K, signature) → true/false 
(anyone who knows the public key K can verify)

https://ef1p.com
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Computations with secret values
The idea behind many signature schemes is to use 
a linear one-way function f to hide the private key 
while still allowing the verifier to compute with it.

Example: You can compute f(a · b) if you know f(b) 
and a without having to know b (s. Diffie-Hellman).

For the signature scheme discussed today,
k is the private key and K = Gk the public key.

A signature value s has to depend on the private 
key k and h = hash(message).

https://ef1p.com
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Zero-knowledge proofs
Goal: Convince another party of one’s knowledge 
w/o revealing any information or leaving evidence.

Parties: Prover convinces verifier of knowing k. 
Trivial by revealing k but not zero-knowledge then.

● Completeness (successful proof): An honest 
verifier will be convinced by an honest prover.

● Soundness (proof of knowledge): Prover can 
fake knowledge only with negligible probability.

● Zero-knowledge: Verifier can fake transcript.

https://ef1p.com
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Knowledge of discrete logarithm
Prover

knows k so that K = Gk

choose random r < |G|
compute R = Gr

compute s =|G| r − k · c

Verifier

choose random c < |G|

verify that R = Gs · Kc

R

c

s

https://ef1p.com
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Evaluation of criteria
● Completeness: Gr = Gr − k · c · (Gk)c.

● Soundness: By sending distinct challenges c 
and c' after the same R, the verifier can extract 
the secret k by computing (s − s')/(c' − c) 
because Gs · Kc = R = Gs' · Kc' and thus
Gs / Gs' = Gs − s' = Kc' / Kc = Kc' − c.

● Zero-Knowledge: By choosing the random 
values c and s first, the verifier can compute
R = Gs · Kc, which results in a valid transcript.

https://ef1p.com
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Choice of the challenge
Since the verifier might choose the challenge c 
non-randomly, this protocol is only so-called 
honest-verifier zero-knowledge. A dishonest 
verifier can turn this into a signature scheme.
(The verifier could commit to c beforehand.)

To be a proof of knowledge, the prover has to 
learn the challenge c after fixing the ephemeral 
key R. This dependency can be established either 
by a verifier or by a cryptographic hash function.

https://ef1p.com
https://en.wikipedia.org/wiki/Commitment_scheme
https://en.wikipedia.org/wiki/Ephemeral_key
https://en.wikipedia.org/wiki/Ephemeral_key
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Schnorr signature scheme
Signer:

● Knows k so that K = Gk.

● Choose random r < |G|.

● Compute R = Gr, c = hash(R, m, K),
and s =|G| r − k · c for message m.

● Share (c, s) as a signature.

Verifier:

● Verify whether c = hash(Gs · Kc, m, K).

https://ef1p.com
https://en.wikipedia.org/wiki/Schnorr_signature
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Appendix of missing explanations
● |G| is the so-called order of the generator G, 

which is the smallest integer n so that Gn =p 1.
● Every integer A strictly between 0 and p is 

relatively prime to p, i.e. gcd(A, p) = 1.
● Extended Euclidean alg.: A–1 exists for every A.
● A · X =p B has solution X =p A–1 · B for every B.
● Given p – 1 possible X and B, solution is unique.
● Thus, A·X is a permutation of all possible values.
● Π X =p Π A · X =p Ap–1 · Π X (product over all X).
● Cancel Π X on both sides: 1 =p Ap–1 for all A.

https://ef1p.com
https://explained-from-first-principles.com/number-theory/#element-order
https://en.wikipedia.org/wiki/Coprime_integers
https://en.wikipedia.org/wiki/Permutation
https://explained-from-first-principles.com/number-theory/#proof-without-cosets-for-commutative-groups
https://explained-from-first-principles.com/number-theory/#fermats-little-theorem

