IT Compact Course

Hardware and Software
Internet and VWeb

Cryptography

Kaspar Etter, October 201 |
License: CC BY-NC-ND 3.0



| . Hardware and Software

Hardware:

* Computers (physical)

* General purpose machines
* Expensive to design

* Expensive to copy

* Subjected to wear

Software:

* Programs (intangible)

* Special purpose instructions
* Expensive to design

* Free to copy

* Wear-free



| . Hardware and Software

Input/Output (I/O)

Input

/\
Real World Computer
\/

rocessing of information
Output (P : )

«Computer Science is no more about computers
than astronomy is about telescopes.»

Edsger Dijkstra (misattributed)



| . Hardware and Software

Computers

The good news are that ...
* they do exactly what you tell them to do

* they do it very fast

The bad news are that ...
* they do exactly what you tell them to do

* they do it very fast

«To err is human, but to really mess things up
you need a computer!»



| . Hardware and Software

Outline

|.1. Processor
Hardware
|.2. Memory
|.3. Program
Software
| .4. Operating System

|.5. Data Structures

Programming
|.6. Algorithms

General reference and source for
further reading: www.wikipedia.org



| . Hardware and Software

|.1. Processor
* Central Processing Unit (CPU)

* Sequential processing of arithmetic and logical operations

* Data stored as binary numbers due to easy implementation
in digital electronic circuitry using logic gates

* Only integers considered here (no floating-point numbers)

* A digital system uses discrete values, an analog system uses
continuous values to represent information
(Digital comes from the Latin word digitus, meaning finger)

* A bit (a contraction of binary digit) is the basic unit of

information in computing and is usually denoted as 0 and |
6



|.1. Processor

Bits and Bytes

* 8 bits (b) = | byte/octet (B), allows to represent 256 values
* Unsigned 8-bit integer: 0 to 255; signed integer: -128 to 127

* Byte was the # of bits to encode a single character of text:
Basic addressable element in many computer architectures

* Processors manipulate bits in fix-sized groups named words

* Prefixes: Decimal (SI) Binary

kilo (k) 103 | kibi (Ki) | 2'= [.02-103

mega (M) | 10% | mebi (Mi) | 220 =~ |.05-10°%
giga (G) | 10° | gibi (Gi) | 230 = 1.07:10°
tera (T) | 102 | tebi (Ti) | 240 = 1.10-10'2




|.1. Processor

Pointers, Registers and Flags

* Von Neumann architecture: Data & code in same memory

 Material based on Intel’s instruction set architecture x86-32
Heavily simplified (no segmentation, addressing modes, etc.)

* Word length of 32 bits (= 4 bytes), from 0 to 4294'967°295
* Instruction pointer: Memory address of next instruction

* 8 registers hold the current operands (the first 4 being
general-purpose): EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP

* Carry, overflow and zero flag: Bits set after every operation

* Much of the trouble comes from backward compatibility



|.1. Processor

Operations

* Conceptually, there are only three types of operations:

* Load data from memory to registers and
store data from registers back to memory

* Perform arithmetic and logical operations on registers
* Control program flow with (conditional) jumps in code
* Memory is accessed with pointers to the desired locations

* Jumps can be absolute or relative in terms of memory
address and often depend on the last executed operation

* The x86 instruction set comprises hundreds of operations



|. Processor

Assembly

* A low-level programming language that represents binary
machine code in a human-readable form (with mnemonics)

* Needs to be translated into machine code for execution

* Example: Add together all numbers from | to 100

operator
\>mov
mov
(loop : add
label @dd
cmp

ble
<)halt

¢ operands)

#0,
#1,
num,
#1,
num,
loop

S um
num

S Uum
num

#100

branch less or equal

C

°
’
°
’
°
’
°
’
°
’

°
’

comment

set sum to O

set num to 1

add num to sum

add 1 to num

compare num to 100

1f num <= 100, go back to 'loop'
end of program. stop running

source and destination (register)



|. Processor

Plpellnlng

* Increase the instruction throughput by splitting the proc-
essing of an instruction into a series of independent steps
(which increases the time to execute a single instruction)

* Issue instructions at the processing rate of the slowest step

* Maintain semantics for interdependent instructions and
branches (branch prediction and speculative execution)

Instr No. Pipeline Stage .
1 | F |0 |Ex [vem we | Instruction fetch
2 IF | 1D | EX [MEM WB 2. Instruction decode and register fetch
3 IF { ID | EX MEM| WB 3 Execute
4 IF | ID | EX [MEM .
5 “Tole| 4 Memory access
Cock [ 112 3]a]s]6]7 5. Register write back ”



file://localhost/Users/casper/Downloads/5_Stage_Pipeline.svg
file://localhost/Users/casper/Downloads/5_Stage_Pipeline.svg
file://localhost/Users/casper/Downloads/5_Stage_Pipeline.svg

|.1. Processor

Moore’s Law

* Trend described by Intel co-founder Gordon Moore, | 965:
The number of transistors on chips doubles every 2 years.

* Originally an observation

and forecast, now a
self-fulfilling prophecy

* Wirth’s law, |1995:
Software is getting
slower more rapidly
than hardware
becomes faster.

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000

100,000,000

10,000,000 -

1,000,000

100,000 -

10,000

. MOS 65
2,300— 4004@ “RCA 1802

*. Six-Core Opteron 2400
2 i7 (Quad)

AAAAAA
||||||||||||

nnnnnnnnn

SSSSS

00000

888888

GGGGG

[ T
1971 1980

Date of i

I ! 1
1990 2000 2011

ntroduction



| . Hardware and Software

|.2. Memory

* A list of cells into which numbers can be placed or read
* The cells are numbered and can be addressed accordingly
* Hardware does not know the semantics of these numbers

* Memory is the bottleneck (limiting component of a system)

Schedule of bus and tram departures 3



|.2. Memory

Caching

* A cache stores data for faster access in the future
* Cache hit: Requested data is contained in the cache

e Cache miss: Data has to be fetched from another location;
Replaces a cache entry selected by the replacement policy

* The writing of data can be handled in two ways:
- Write-through: Write to cache and memory concurrently
- Write-back: Store the dirty cache entry on replacement
Entries become stale, if somebody updates the original data

* Useful due to temporal and spatial locality of references

* The hit ratio (#hits / #misses) determines the performance
14



|.2. Memory
Memory Hierarchy

Growing disparity of speed Caches can
between CPU and memory be managed
by hardware

A ] '
Smaller, faster Registers or software!

and costlier / On-chip LI c. \

(per byte) w Cache
/ Off-chip L2 cache \

Larger, slower

and cheaper / Main memory \

er byte
v P ’ )/ Hard disk \
/ Internet \




|.2. Memory

Characteristics and Access

* ROM: Read-only memory, e.g. Compact Discs (CD-ROM);
Used for firmware (low-level, hardware-specific software)

* RAM: Random-access memory, data can be accessed in any
order (unlike disks); Often volatile storage (power supply!)

* Main memory connected to
the CPU via a memory bus

* The memory management
unit (MMU) calculates the
actual memory address

e Disks: Seek time + rotation



| . Hardware and Software

|.3. Program

* A sequence of instructions that perform a specified task
* In its simplest form, takes some input and generates output
* The main qualities of software (programs) are:
* Correctness: functional behavior according to specification
* Performance: fast execution, low memory consumption
* Maintainability: easy modification after initial development
* Reusability: simple adaptation to new purposes/products
* Usability: learnability, efficiency, memorability, satisfaction

* Security: confidentiality, integrity, availability (cryptography)

|7



3. Program «Any feature is a bug un-

Bu gs less it can be turned off.»

* Software errors cost the US economy $60 billion annually,
or about 0.6 percent of the gross domestic product (2002)

* US$I billion Ariane 5 rocket destroyed after takeoff (1996)

* Several patients were killed

/49

° ° 0&t0  Gakomn >-J<w\*$} o R AR OB i3
by the Therac-25 radiation | ; R CL
therapy machine (1980s) i S ’,;,.:’;M ol

° (WALATE (D)1 (03 = 4‘9/*’7.\ oljw%} heck
* Terminology: debug, buggy L RE i
s 18 k 5 \Zg\o; 70\ Cane [ F
* «Testing shows the presence, ”77 e
o MI‘ \L:Y *\\*‘ (\\ cas -f bu1 belingd aund.
not the absence of bugs.» o S it

Edsger Dijkstra

«First actual case of bug being found.» (1947)
|18



|.3. Program
Programming Language

* An artificial language to give instructions to a computer
* Developing software in assembly language is error-prone

* Increase the programmer’s productivity by providing a tool:
A program that mediates between man and machine

* Natural language is inappropriate: complex and ambiguous

* Formal languages consist of two parts: syntax and semantics
* Defined by a specification or a reference implementation

* Trade-off between abstraction/safety and expressiveness

* Benefit: High-level languages reduce platform dependency

19



|.3. Program

Source Code

* Text written in a high-level programming language that
can be translated to binary machine code for execution

* Protected by copyright, protected form of free speech

* Example:"Hello world” in the C programming language

+~ — include standard I/O library
#include <stdio.h>

print formatted string ~ — main method with return type integer
k int main () { (called by the run-time environment)

— printf ("Hello world!\n'") ;< terminates
code block . 0 A statement
returh A ’ escape sequence for newline character

J exit code indicating successful execution
20



|.3. Program

Compiler and Interpreter

* A compiler translates source code into machine code
* It checks the syntax and rejects invalid programs

* Semantic checks performed either statically (at compile
time, e.g. types) or dynamically (at run time, e.g. arrays)

* Optimization: Constant propagation, common subexpres-
sion elimination, register allocation, instruction scheduling

* Interpreter: Execute code directly, present during execution
* Just-in-time compilation (JIT): Sections compiled ‘on the fly’

* Reverse engineering: Decompilation (vs. code obfuscation)

21



|.3. Program

Text Terminal

* Command-line interface (CLI): Type commands to interact
* Graphical user interface (GUI): Manipulate visual elements
* Commands invoke programs with standard in- and output
* Interrupt their execution with ctrl-c (or ctrl-d on input)

* Structure: command arguments (syntax given by command)
* >’ redirects output to a new file (">>’ appends to a file)

* ‘|’ chains output of left command & input of right command
* Prompt: Ready to accept commands, usually ends with ‘$’

* Mac: Open ‘Applications/Ustilities/ Terminal’ and type ‘help’

22



|.3. Program

Demo: Integer Factorization

#include <stdio.h>

int main () {
int number;
printf ("Number: "),

scanf ("%d", &number);
while (number > 0) {

printf ("Factors: ");

int factor = 2;

while (factor * factor <= number)

O

1f (number % factor
factor) ;
number = number / factor;

printf ("%d, ",
} else {
factor = factor + 1;

}
}

printf ("%$d\n", number);

printf ("Number: ");

scanf ("5d", &number);

}

return 0O;

Comments:

Varlable declaration

Print to standard output
Read a number from input
Loop while condition true

Assign value to varilable

Check remainder (modulo)

Store in a file ‘code.c’
Compile with ‘gcc code.c’
Run by typing ‘./a.out’

Note: If you want to
learn a language, learn

Java and not C/C++!
23



| . Hardware and Software

|.4. Operating System

* The OS manages the hardware:

* Abstraction: Simplify and standardize access to hardware
(with so-called Application Programming Interface (API))

* Duplication: Provide same resources to several programs

* Protection: Ensure fairness and prevent misbehavior

Application programs

Operating system

Processor

Main Memory

/O devices

Software

Hardware

24



| .4. Operating System
Process

* The OS creates for every running program a new process

* OS gives to each process the illusion of exclusive hardware:
Execution without interruption, own memory and own |/O

* Processes can run concurrently by an interleaved execution
* Control transfer between processes with context switches
* Interrupts trigger special code in OS (privileged execution)
* Process scheduling done with regular hardware interrupts

* Processes have an owner and corresponding permissions

* A process can again have multiple execution units: Threads

25



| .4. Operating System
Virtual Memory

* Each process has its own virtual address space: Stack
* Code: Instructions copied from the executable !
* Data: Global variables (statically allocated) |

* Heap: Objects (dynamically allocated memory) Heap

e Stack: Tracks function calls and local variables Data

* Virtual memory split into blocks called pages Code

* OS allocates memory on demand at any location
* Every memory access gets translated into physical address

* If main memory is full, OS swaps inactive pages to hard disk
26



| .4. Operating System
Partitioning

* Divide the hard disk drive into multiple logical storage units
* Booting is the process of loading the OS when starting up

* Multiple OSs can be installed on different partitions, loaded
by the built-in basic input/output system (BIOS, “firmware”)

* File systems organize data to be retained after termination
of a process: Store data permanently in units known as files

* Files consist of linked blocks, are structured by directories
* Specific FS layouts per partition, recover from corrupted FS

* Defragmentation reorganizes files into contiguous blocks

27



| . Hardware and Software

| .5. Data Structures

* A data structure is a way of storing and organizing data
* Different data structures suited to different applications
* Goal is time and space efficient manipulation of stored data

* Support the design of efficient algorithms (belong together)

* Arrays are a collection of elements in a continuous block
* Address of each element can be computed from its index
* Size fixed at allocation, insertion or removal needs copying

» Constant access, but linear insertion b b+i
| {3 14| 6|9

28



| .5. Data Structures

Lists and Trees

* A linked list is a sequence of elements stored in nodes

* Each node references the next node in the sequence

 Constant insertion and removal, but linear access time

| | . o 3| o 4 | . {6 |

J 9| .

* A binary tree is a linked structure where
every node has at most two child nodes

* Restriction that left nodes are smaller and
right nodes are bigger allows binary search

29



| .5. Data Structures

Stacks and Queues -
ush Pop

* A stack is a last in, first out (LIFO) collection \ f}

* Only two operations provided: Push and pop

* Implementation with an array or a linked list

* Used to track open tasks (e.g. the call stack)

* A queue is a first in, first out (FIFO) collection (as a buffer)

* Only two operations provided: Enqueue and dequeue

Enqueue — — Dequeue

30



| .5. Data Structures

Hash Tables

* A hash table maps identifying values to associated values

* A hash function is used to transform the key into an index
that indicates the corresponding value’s position in an array

* A hash function maps values from a large to a small domain
* Collisions occur when different keys map to the same hash

* Widely used due to near-constant lookups (exc. collisions)

A |Alice: alice@example.com
Eve B |Bob: bob@example.com
Alice

Bob E |Eve: eve@example.com

31



| .5. Data Structures

Buffer Overflow

* A buffer temporarily holds data that is moved from one
place to another (implemented in hardware or software)

* Typically used for streaming (I/O) with variable rates

* Often implemented as a queue for simultaneous access

* Buffer overflows if incoming data exceeds storage capacity

* If not properly handled, adjacent memory gets overwritten

* Attacker overwrites return address or variable in call stack
* After decades of exploitation, still one of top vulnerabilities

* Solution: Use memory safe programming languages like Java

32



| . Hardware and Software

|.6.Algorithms

* An algorithm is a procedure for solving a specified problem
in a finite number of steps (i.e. eventually producing output)

* Transitions between states do not have to be deterministic
* Brute-force: Naive method of trying every possible solution

* Euclid’s algorithm for the greatest common divisor (GCD):
6

function gcd(a, b)
1f a =0
return b
while b # 0
1f a > b
a := a — b
else
b := b - a
return a

o

0y

b
2
9
3
3
0

wWwWlwilon| O

|5 3 33



|.6.Algorithms

Sorting

* Given a list of comparable objects, return them in order
* Bubble sort: Steps repeatedly through the list, compares
adjacent items and swaps them if they are in wrong order
* Visualizing the sorting, small elements bubble to the top
* In-place algorithm: Only constant amount of extra storage
* Merge sort: Divides the list into halves, sorts them recur-
sively and merges the results (divide & conquer algorithm)
* Preserves the input order of equal elements (stable sort)

* Requires a linear amount of additional storage space

* See: cs.usfca.edu/~galles/visualization/ComparisonSort.html
34


http://cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://cs.usfca.edu/~galles/visualization/ComparisonSort.html

|.6.Algorithms

Time Complexity

* Estimating the processing time of algorithms, we are only
interested in how they respond to changes in input size:
Efficiency measured by how well they scale with input size

* Big O notation characterizes functions according to their
growth rate by suppressing multiplicative constants and
lower order terms (upper bound): e.g. 5n® + 3n is O(n3)

* Constant time (or space) complexity expressed as O(|)
* O(n) denotes a linear, O(2") an exponential time algorithm
* Bubble sort is O(n?): n rounds of n comparisons and swaps

* Merge sort is O(n log n): log n rounds of linear merging
35



|.6.Algorithms

Complexity Theory

* Classifying problems according to their inherent difficulty;
Determine the practical limits of what computers can do

* A complexity class is a set of problems of related difficulty:
* P: Problems deterministically solvable in polynomial time

* NP: Non-deterministically solvable in polynomial time, i.e.
a solution to the problem can be verified in polynomial t.

* Clearly, P € NP, NP containing many important problems;
Hardest problems in NP are NP-complete (reduction...)

* Example for NP-complete: The subset sum problem (> = 0)

* P £ NP problem: Efficient check implies efficient solution?

36



|.6.Algorithms

Computability Theory

* Asks what kind of problems can be solved algorithmically
* A decision problem is a question with a yes-or-no answer
* A decision problem solvable by an algorithm is decidable

* Halting Problem: Given a description of a program and a
finite input, decide whether the program finishes running

* An algorithm is required to terminate (i.e. in finite time)

* Alan Turing proved in 1936 that no general algorithm to
solve the halting problem for all possible pairs can exist

* Proof by reduction: New algo. would solve undec. problem

37



| . Hardware and Software

Concepts Learned Today

* Abstraction

* Algorithm

* Bootstrapping
* Bottleneck

* Caching

* Complexity

* Pipelining

* Specification

* Transparency

38



|. Hardware and Software My favorite comment:
Then again, there’s the Brute Force

C I i P Of TO d ay technique: Steal already sorted arrays

from third world countries. O(1).

Barack Obama - Computer Science Question (1:25)

http://www.youtube.com/watch?v=k4RRi_ntQc8

39


http://www.youtube.com/watch?v=k4RRi_ntQc8
http://www.youtube.com/watch?v=k4RRi_ntQc8

Questions!

40



